
Reverse Engineering March, 2023

Lab session 0x03

In this lab session, we will see some assembly code and disassemble a few ELF binaries.

1 Lab files

The files for this lab session are available at https://pwnthybytes.ro/unibuc re/03-lab-files.zip and the
password for the zip file is infected.

2 Tools we use (Windows and Linux)

Today, all the work will be done in the Windows and Linux environments. Make sure you have IDA
installed for Windows.

2.1 Tasks: basic disassembly

The tasks today will make use of the compiler explorer Godbolt1. Using the gcc compiler write short
sequences of code and check the resulting disassembly for:

1. Write a basic “hello world” C program. Compile it to the hello binary and then:

(a) Run readelf –program-headers hello to see the ELF program headers.

(b) Run readelf –section-headers hello to see the ELF program sections.

(c) Pay attention to the following sections:

• .text - containing the majority of code, both user-written code and boilerplate generated
by the compiler.

• .init - containing code usually generated by the compiler that is supposed to run before
main() has been called.

• .fini - containing code usually generated by the compiler that is supposed to run after
main() has been called.

• .plt - containing code generated by the compiler in order to call functions from libraries.
• .rodata - containing Read Only Data used by the program (strings, constants, etc.).
• .data - containing Read/Write Data, used for initialized variables, mutable strings, etc.
• .bss - containing Read/Write Data, used for uninitialized global variables.
• .got / .got.plt - (Global Offset Table) containing pointers used in library call resolution.
• .init array / .fini array - containing pointers used in the code from the .init / .fini
sections.

(d) Compile and disassemble the hello binary using IDA in the following cases:

• compile with debugging symbols (-g flag for gcc). Note especially the binary organization
(code, data, relocations) and the IDA features (tabs, disassembly, graph view, navbar,
xrefs, decompilation, symbols).

• compile without debugging symbols (-s and/or -S flags for gcc). Note again the IDA
features which are available now.

• try to understand in IDA what is going on with the binaries obscure and crackme from
Lab session 0x01.

1https://godbolt.org/

1

3 IDA cheat sheet

In Class 0x03 you have several references to IDA tutorials. Here we provide a brief overview of the main
functionality that you will need.

Navigation

• To go into another function, double-click the function name either in the function sidebar (left
pane) or in the IDA-View or Pseudocode view.

• Switching between IDA-View and Pseudocode: Press Tab to go to the exact assembly instruction
for the current position. Alternatively, press F5 to see pseudocode without pinpointing the above.

• Switching between Linear-View and Graph-View: Press Space.

• Press Esc to go to the previous view.

• To find usages of the current function/variable/item, right-click and choose Jump to xref.. or
press x.

Renaming/Redeclaring

• Changing the signature of a function: Right-Click the signature in the IDA-View or Pseudocode
View and click Set item type. Keyboard shortcut: y.

• Changing the type of a variable: Right-Click the variable in the IDA-View or Pseudocode View
and click Set lvar type. Keyboard shortcut: y.

• Changing the name of a function/variable: Right-Click the function/variable in the IDA-View or
Pseudocode View and click Rename global/lvar item. Keyboard shortcut: n.

Reorganizing the stack variables

• To change a stack variable into something else (smaller, bigger, structure, turn into an array) first
double-click on the variable to go into the Stack frame of that specific function. Observe how much
space you have for your desired actions. Right-click on the variable and click Set type.

• Note that when turning into an array it is ideal to first change the variable into the array unit
(e.g., if you want to change a stack space into int v[30], and v is currently char, first turn v into an
int) and then right-click and choose Array. It will be possible to now see some suggestions from
IDA regarding the ideal/maximum array size.

When in doubt Right Click!(or hover)

4 Lab tasks: disassemble with IDA

4.1 Reverse engineering with spoilers

Usually, when reverse engineering, all we have is a binary. Starting from it, we need to reconstruct
(mainly through guessing/inferences) what the function names could be, what the variables are used for,
and what the program does as a whole.
You have a binary, task1, and also its corresponding source code, task1.c. Using the stripped binary,

you will simulate normal reverse engineering by using the source code (instead of guessing).
Your task is to create a near-original replica of the original source in the IDA interface by:

2

1. Renaming/retyping the 4 functions in the source code (aside from main()) (3p)

2. Renaming/retyping the stack variables in setup() and main(). (1p)

3. Renaming/retyping the stack variables (including the arrays) in chance() and gen rand string().
(2p)

4.2 Statically linked crackme - graybox analysis (dynamic + static)

In this task, you will learn to navigate through functions in a statically linked and stripped crackme.
Since the binary has a whopping 783 functions detected, you do not have the time or motivation to

go through all of them. As such, you need to approach the problem in a clever and elegant way:

1. Run the program once and take note of any strings. Go to the .rodata segment (Ctrl-s) and find
any/all of the strings. Using the xref functionality, determine where the main() function is. (1p)

2. Rename all the functions in main() and determine the password-checking function. (1p)

3. In the password-checking function, observe how the correct password is generated; we want to
make this function more readable.

4. Go to the location of any word variable in IDA-view and find the location of the start of the
alphabet and redeclare that address as a wide C string (Edit→Strings→Unicode).

5. Again, in the password checking function, observe how the right-hand side looks now. Redeclare
the alphabet with the “const” modifier at the beginning. This should collapse the function and
reveal the correct password. Finally, check that the password is accepted. (2p)

4.3 Data Structures

In this task, you will learn to use the Structures functionality of IDA.
Only the simplest programs are written without any sort of data structure in mind. Even basic OOP

features are implemented using structures; classes themselves are also compiled as structures. However,
after compilation, structure and type information is lost (if we do not have debugging symbols) but we
can still observe repeated access patterns and infer what various structures might have looked like.
Look at the code in main() and the password checking function, analyze the access patterns,

and verify that it matches the linked list structure below.
Perform and check the following tasks:

1. Use the Structures tab and create the following list structure (also declare field 8 next as a
struc 1* pointer) (2p)

00000000 s t r u c 1 s t ruc ; (s i z e o f=0x10 , mappedto 8)
00000000 f i e l d 0 i d x dd ?
00000004 f i e l d 4 db ?
00000005 db ? ; undef ined
00000006 db ? ; undef ined
00000007 db ? ; undef ined
00000008 f i e l d 8 n e x t dq ? ; o f f s e t
00000010 s t r u c 1 ends

2. In main(), cast the buffer returned from malloc and the head of the list to this struct type and
propagate in the password checking function, renaming and retyping where necessary. (2p)

3. Describe what the code does and figure out the correct password. (2p)

3

